CLICK HERE FOR BLOGGER TEMPLATES AND MYSPACE LAYOUTS

Senin, 23 Februari 2009

Teknologi Nuklir


Reaktor nuklir adalah tempat/perangkat dimana reaksi nuklir berantai dibuat, diatur dan dijaga kesinambungannya pada laju yang tetap (berlawanan dengan bom nuklir, dimana reaksi berantai terjadi pada orde pecahan detik, reaksi ini tidak terkontrol).

Reaktor nuklir digunakan untuk banyak tujuan. Saat ini, reaktor nuklir paling banyak digunakan untuk membangkitkan listrik. Reaktor penelitian digunakan untuk pembuatan radioisotop (isotop radioaktif) dan untuk penelitian. Awalnya, reaktor nuklir pertama digunakan untuk memproduksi plutonium sebagai bahan senjata nuklir.

Saat ini, semua reaktor nuklir komersial berbasis pada reaksi fissi nuklir, dan sering dipertimbangkan masalah resiko keselamatannya. Sebaliknya, beberapa kalangan menyatakan PLTN merupakan cara yang aman dan bebas polusi untuk membangkitkan listrik. Daya fusi merupakan teknologi ekperimental yang berbasi pada reaksi fusi nuklir. Ada beberapa piranti lain untuk mengendalikan reaksi nuklir, termasuk di dalamnya pembangkit thermoelektrik radioisotop dan baterai atom, yang membangkitkan panas dan daya dengan cara memanfaatkan peluruhan radioaktif pasif, seperti halnya Farnsworth-Hirsch fusor, dimana reaksi fusi nuklir terkendali digunakan untuk menghasilkan radiasi neutron.

Daftar isi

Aplikasi

Sejarah

Gambar dari paten "reaktor neutron" Fermi-Szilárd.

Meskipun umat manusia telah menguasai daya nuklir baru-baru ini, reaktor nuklir yang pertama muncul dikendalikan oleh alam. Lima belas reaktor fissi nuklir alami telah ditemukan di tambang Oklo, Gabon, West Africa. Pertama ditemukan pada tahun 1972 oleh ahli fisika Perancis Francis Perrin. Reaktor alami ini dikenal dengan sebutan Reaktor Fossil Oklo. Reaktor-reaktor ini diperkirakan aktif selama 150 juta tahun, dengan daya keluaran rerata 100 kW. Bintang-bintang juga mengandalkan fusi nuklir guna membangkitkan panas, cahaya dan radiasi lainnya. Konsep reaktor nuklir alami diajukan pertama kali oleh Paul Kuroda pada tahun 1956 saat di Universitas Arkansas [1].

Enrico Fermi dan Leó Szilárd, pertama kali membangun reaktor nuklir Chicago Pile-1 saat mereka di Universitas Chicago pada 2 Desember, 1942.

Reaktor nuklir generasi pertama digunakan untuk menghasilkan plutonium sebagai bahan senjata nuklir. Selain itu, reaktor nuklir juga digunakan oleh angkatan laut Amerika (lihat Reaktor Angkatan Laut Amerika Serikat) untuk menggerakkan kapal selam dan kapal pengangkut pesawat udara. Pada pertengahan 1950-an, baik Uni Sovyet maupun negara-negara barat meningkatkan penelitian nuklirnya termasuk penggunaan atom di luar militer. Tetapi, sebagaimana program militer, penelitian atom di bidang non-militer juga dilakukan dengan rahasia.

Pada 20 Desember 1951, listrik dari generator yang digerakkan oleh tenaga nuklir pertama kali dihasilkan oleh Experimental Breeder Reactor-I (EBR-1) yang berlokasi di Arco, Idaho. Pada 26 Juni 1954, pukul 5:30 pagi, PLTN pertama dunia utnuk pertama kalinya mulai beroperasi di Obninsk, Kaluga Oblast, USSR. PLTN ini menghasilkan 5 megawatt, cukup untuk melayani daya 2,000 rumah. [2][3].

PLTN skala komersial pertama dunia adalah Calder Hall, yang mulai beroperasi pada 17 Oktober 1956 [4]. Reaktor generasi pertama lainnya adalah Shippingport Reactor yang berada di Pennsylvania (1957).

Sebelum kecelakaan Three Mile Island pada 1979, sebenarnya permintaan akan PLTN baru di Amerika Serikat sudah menurun karena alasan ekonomi. Dari tahun 1978 sampai dengan 2004, tidak ada permintaan PLTN baru di Amerikat Serikat [5], meskipun hal itu mungkin akan berubah pada tahun 2010 ( lihat Masa depan industri nuklir).

Tidak seperti halnya kecelakaan Three Mile Island, kecelakaan Chernobyl pada tahun 1986 tidak berpengaruh pada peningkatan standar reaktor nuklir negara barat. Hal ini dikarenakan memang reaktor Chernobyl dikenal mempunyai desain yang tidak aman , menggunakan reaktor jenis RBMK, tanpa kubah pengaman (containment building) dan dioperasikan dengan tidak aman, dan pihak barat memetik pelajaran dari hal ini [6].

Pada tahun 1992 topan Andrew menghamtam Turkey Point Nuclear Generating Station. Lebih dari US$90 juta kerugian yang diderita, sebagian besar menimpa tangki penampungan air dan cerobong asap pembangkit listrik berbahan bakar fossil (minyak/batubara) yang ada dilokasi, tapi containment building tidak mengalami kerusakan [7][8].

Masa depan industri nuklir

Hingga tahun 2006, Watts Bar 1, yang akan beroperasi pada tahun 1997, adalah PLTN komersial Amerika Serikat terakhir yang akan beroperasi. Hal ini biasanya dijadikan bukti berhasilnya kampanye anti PLTN/nuklir dunia. Tetapi, penolakan politis akan nuklir hanya berhasil terjadi di sebagian Eropa, Selandia Baru, Filipina dan USA. Bahkan di USA dan seluruh Eropa, investasi pada penelitian daur bahan bakar nuklir terus berlanjut, dan dengan prediksi beberapa ahli akan kelangkaan listrik , peningkatan harga bahan bakar fossil dan perhatian akan emisi gas rumah kaca akan memperbarui kebutuhan PLTN.

Banyak negara yang tetap aktif mengembangkan energi nuklirnya termasuk diantaranya Jepang, China dan India, kesemuanya aktif mengembangkan teknolgi reaktor thermal dan reaktor cepat. Korea Selatan dan USA hanya mengembangkan teknolgi reaktor thermasSouth, Afrika Selatan dan China mengembangkan versi baru Pebble Bed Modular Reactor (PBMR). Finlandia dan Perancis aktif mengembangkan energi nuklir; Finladia mempunyai European Pressurized Reactor yang sedang dibangun oleh Areva. Jepang membangun unit yang beroperasi pada tahun 2005.

Pada 22 September 2005 telah diumumkan dua lokasi baru di USA yang telah dipilih sebagai lokasi PLTN.

Tipe-tipe reaktor

Reaktor PULSTAR yang dimiliki oleh universitas NC State adalah reaktor penelitian jenis kolam daya 1 MW dengan pengkayaan uranium 4%, bahan bakar pin yang terdiri dari pellet UO2 dalam cladding zircaloy
Ruang kendali reaktor PULSTAR universitas NC State

Sejumlah teknologi reaktor telah dikembangkan. Reaktor fissi secara umum dapat dikelompokkan berdasarkan jenis energi neutron yang digunakan dalam reaksi berantainya.

  • Reaktor thermal (lambat) menggunakan neutron lambat atau neutron thermal. Reaktor ini bercirikan mempunyai material pelambat yang ditujukan untuk melambatkan neutron sampai mempunyai energi kinetik rerata partikel yang ada disekitarnya, dengan kata lain, sampai mereka "dithermalkan"


Sabtu, 21 Februari 2009

Pengertian Teknologi

Teknologi adalah satu ciri yang mendefinisikan hakikat manusia yaitu bagian dari sejarahnya meliputi keseluruhan sejarah. Teknologi, menurut Djoyohadikusumo (1994, 222) berkaitan erat dengan sains (science) dan perekayasaan (engineering). Dengan kata lain, teknologi mengandung dua dimensi, yaitu science dan engineering yang saling berkaitan satu sama lainnya. Sains mengacu pada pemahaman kita tentang dunia nyata sekitar kita, artinya mengenai ciri-ciri dasar pada dimensi ruang, tentang materi dan energi dalam interaksinya satu terhadap lainnya.

Definisi mengenai sains menurut Sardar (1987, 161) adalah sarana pemecahan masalah mendasar dari setiap peradaban. Tanpa sains, lanjut Sardar (1987, 161) suatu peradaban tidak dapat mempertahankan struktur-struktur politik dan sosialnya atau memenuhi kebutuhan-kebutuhan dasar rakyat dan budayanya. Sebagai perwujudan eksternal suatu epistemologi, sains membentuk lingkungan fisik, intelektual dan budaya serta memajukan cara produksi ekonomis yang dipilih oleh suatu peradaban. Pendeknya, sains, jelas Sardar (1987, 161) adalah sarana yang pada akhirnya mencetak suatu peradaban, dia merupakan ungkapan fisik dari pandangan dunianya. Sedangkan rekayasa, menurut Djoyohadikusumo (1994, 222) menyangkut hal pengetahuan objektif (tentang ruang, materi, energi) yang diterapkan di bidang perancangan (termasuk mengenai peralatan teknisnya). Dengan kata lain, teknologi mencakup teknik dan peralatan untuk menyelenggarakan rancangan yang didasarkan atas hasil sains.

Seringkali diadakan pemisahan, bahkan pertentangan antara sains dan penelitian ilmiah yang bersifat mendasar (basic science and fundamental) di satu pihak dan di pihak lain sains terapan dan penelitian terapan (applied science and applied research). Namun, satu sama lain sebenarnya harus dilihat sebagai dua jalur yang bersifat komplementer yang saling melengkapi, bahkan sebagai bejana berhubungan; dapat dibedakan, akan tetapi tidak boleh dipisahkan satu dari yang lainnya (Djoyohadikusumo 1994, 223).

Makna Teknologi, menurut Capra (2004, 106) seperti makna ‘sains’, telah mengalami perubahan sepanjang sejarah. Teknologi, berasal dari literatur Yunani, yaitu technologia, yang diperoleh dari asal kata techne, bermakna wacana seni. Ketika istilah itu pertama kali digunakan dalam bahasa Inggris di abad ketujuh belas, maknanya adalah pembahasan sistematis atas ‘seni terapan’ atau pertukangan, dan berangsur-angsur artinya merujuk pada pertukangan itu sendiri. Pada abad ke-20, maknanya diperluas untuk mencakup tidak hanya alat-alat dan mesin-mesin, tetapi juga metode dan teknik non-material. Yang berarti suatu aplikasi sistematis pada teknik maupun metode. Sekarang sebagian besar definisi teknologi, lanjut Capra (2004, 107) menekankan hubungannya dengan sains. Ahli sosiologi Manuel Castells seperti dikutip Capra (2004, 107) mendefinisikan teknologi sebagai ‘kumpulan alat, aturan dan prosedur yang merupakan penerapan pengetahuan ilmiah terhadap suatu pekerjaan tertentu dalam cara yang memungkinkan pengulangan.

Akan tetapi, dijelaskan oleh Capra (107) teknologi jauh lebih tua daripada sains. Asal-usulnya pada pembuatan alat berada jauh di awal spesies manusia, yaitu ketika bahasa, kesadaran reflektif dan kemampuan membuat alat berevolusi bersamaan. Sesuai dengannya, spesies manusia pertama diberi nama Homo habilis (manusia terampil) untuk menunjukkan kemampuannya membuat alat-alat canggih.

Dari perspektif sejarah, seperti digambarkan oleh Toynbee (2004, 35) teknologi merupakan salah satu ciri khusus kemuliaan manusia bahwa dirinya tidak hidup dengan makanan semata. Teknologi merupakan cahaya yang menerangi sebagian sisi non material kehidupan manusia. Teknologi, lanjut Toynbee (2004, 34) merupakan syarat yang memungkinkan konstituen-konstituen non material kehidupan manusia, yaitu perasaan dan pikiran , institusi, ide dan idealnya. Teknologi adalah sebuah manifestasi langsung dari bukti kecerdasan manusia.

Dari pandangan semacam itu, kemudian teknologi berkembang lebih jauh dari yang dipahami sebagai susunan pengetahuan untuk mencapai tujuan praktis atau sebagai sesuatu yang dibuat atau diimplementasikan serta metode untuk membuat atau mengimplementasikannya. Dua pengertian di atas telah digantikan oleh interpretasi teknologi sebagai pengendali lingkungan seperti kekuasaan politik di mana kebangkitan teknologi Barat telah menaklukkan dunia dan sekarang telah digunakan di era dunia baru yang lebih ganas. Untuk memperjelas statement tersebut, kita coba menelaah teknologi secara lebih dalam lagi. Melihat substansi teknologi secara lebih komprehensif, yaitu konsepsi teknologi dari kerangka filsafat.

Global warming

Pemanasan global adalah adanya proses peningkatan suhu rata-rata atmosfer, laut, dan daratan Bumi.

Suhu rata-rata global pada permukaan Bumi telah meningkat 0.74 ± 0.18 °C (1.33 ± 0.32 °F) selama seratus tahun terakhir. Intergovernmental Panel on Climate Change (IPCC) menyimpulkan bahwa, "sebagian besar peningkatan suhu rata-rata global sejak pertengahan abad ke-20 kemungkinan besar disebabkan oleh meningkatnya konsentrasi gas-gas rumah kaca akibat aktivitas manusia"[1] melalui efek rumah kaca. Kesimpulan dasar ini telah dikemukakan oleh setidaknya 30 badan ilmiah dan akademik, termasuk semua akademi sains nasional dari negara-negara G8. Akan tetapi, masih terdapat beberapa ilmuwan yang tidak setuju dengan beberapa kesimpulan yang dikemukakan IPCC tersebut.

Model iklim yang dijadikan acuan oleh projek IPCC menunjukkan suhu permukaan global akan meningkat 1.1 hingga 6.4 °C (2.0 hingga 11.5 °F) antara tahun 1990 dan 2100.[1] Perbedaan angka perkiraan itu disebabkan oleh penggunaan skenario-skenario berbeda mengenai emisi gas-gas rumah kaca di masa mendatang, serta model-model sensitivitas iklim yang berbeda. Walaupun sebagian besar penelitian terfokus pada periode hingga 2100, pemanasan dan kenaikan muka air laut diperkirakan akan terus berlanjut selama lebih dari seribu tahun walaupun tingkat emisi gas rumah kaca telah stabil. Ini mencerminkan besarnya kapasitas panas dari lautan.

Meningkatnya suhu global diperkirakan akan menyebabkan perubahan-perubahan yang lain seperti naiknya permukaan air laut, meningkatnya intensitas fenomena cuaca yang ekstrim,[2] serta perubahan jumlah dan pola presipitasi. Akibat-akibat pemanasan global yang lain adalah terpengaruhnya hasil pertanian, hilangnya gletser, dan punahnya berbagai jenis hewan.

Beberapa hal-hal yang masih diragukan para ilmuwan adalah mengenai jumlah pemanasan yang diperkirakan akan terjadi di masa depan, dan bagaimana pemanasan serta perubahan-perubahan yang terjadi tersebut akan bervariasi dari satu daerah ke daerah yang lain. Hingga saat ini masih terjadi perdebatan politik dan publik di dunia mengenai apa, jika ada, tindakan yang harus dilakukan untuk mengurangi atau membalikkan pemanasan lebih lanjut atau untuk beradaptasi terhadap konsekuensi-konsekuensi yang ada. Sebagian besar pemerintahan negara-negara di dunia telah menandatangani dan meratifikasi Protokol Kyoto, yang mengarah pada pengurangan emisi gas-gas rumah kaca.


Penyebab pemanasan global

Efek rumah kaca

Segala sumber energi yang terdapat di Bumi berasal dari Matahari. Sebagian besar energi tersebut berbentuk radiasi gelombang pendek, termasuk cahaya tampak. Ketika energi ini tiba permukaan Bumi, ia berubah dari cahaya menjadi panas yang menghangatkan Bumi. Permukaan Bumi, akan menyerap sebagian panas dan memantulkan kembali sisanya. Sebagian dari panas ini berwujud radiasi infra merah gelombang panjang ke angkasa luar. Namun sebagian panas tetap terperangkap di atmosfer bumi akibat menumpuknya jumlah gas rumah kaca antara lain uap air, karbon dioksida, dan metana yang menjadi perangkap gelombang radiasi ini. Gas-gas ini menyerap dan memantulkan kembali radiasi gelombang yang dipancarkan Bumi dan akibatnya panas tersebut akan tersimpan di permukaan Bumi. Keadaan ini terjadi terus menerus sehingga mengakibatkan suhu rata-rata tahunan bumi terus meningkat.

Gas-gas tersebut berfungsi sebagaimana gas dalam rumah kaca. Dengan semakin meningkatnya konsentrasi gas-gas ini di atmosfer, semakin banyak panas yang terperangkap di bawahnya.

Efek rumah kaca ini sangat dibutuhkan oleh segala makhluk hidup yang ada di bumi, karena tanpanya, planet ini akan menjadi sangat dingin. Dengan temperatur rata-rata sebesar 15 °C (59 °F), bumi sebenarnya telah lebih panas 33 °C (59 °F)dari temperaturnya semula, jika tidak ada efek rumah kaca suhu bumi hanya -18 °C sehingga es akan menutupi seluruh permukaan Bumi. Akan tetapi sebaliknya, apabila gas-gas tersebut telah berlebihan di atmosfer, akan mengakibatkan pemanasan global.

Efek umpan balik

Anasir penyebab pemanasan global juga dipengaruhi oleh berbagai proses umpan balik yang dihasilkannya. Sebagai contoh adalah pada penguapan air. Pada kasus pemanasan akibat bertambahnya gas-gas rumah kaca seperti CO2, pemanasan pada awalnya akan menyebabkan lebih banyaknya air yang menguap ke atmosfer. Karena uap air sendiri merupakan gas rumah kaca, pemanasan akan terus berlanjut dan menambah jumlah uap air di udara sampai tercapainya suatu kesetimbangan konsentrasi uap air. Efek rumah kaca yang dihasilkannya lebih besar bila dibandingkan oleh akibat gas CO2 sendiri. (Walaupun umpan balik ini meningkatkan kandungan air absolut di udara, kelembaban relatif udara hampir konstan atau bahkan agak menurun karena udara menjadi menghangat).[3] Umpan balik ini hanya berdampak secara perlahan-lahan karena CO2 memiliki usia yang panjang di atmosfer.

Efek umpan balik karena pengaruh awan sedang menjadi objek penelitian saat ini. Bila dilihat dari bawah, awan akan memantulkan kembali radiasi infra merah ke permukaan, sehingga akan meningkatkan efek pemanasan. Sebaliknya bila dilihat dari atas, awan tersebut akan memantulkan sinar Matahari dan radiasi infra merah ke angkasa, sehingga meningkatkan efek pendinginan. Apakah efek netto-nya menghasilkan pemanasan atau pendinginan tergantung pada beberapa detail-detail tertentu seperti tipe dan ketinggian awan tersebut. Detail-detail ini sulit direpresentasikan dalam model iklim, antara lain karena awan sangat kecil bila dibandingkan dengan jarak antara batas-batas komputasional dalam model iklim (sekitar 125 hingga 500 km untuk model yang digunakan dalam Laporan Pandangan IPCC ke Empat). Walaupun demikian, umpan balik awan berada pada peringkat dua bila dibandingkan dengan umpan balik uap air dan dianggap positif (menambah pemanasan) dalam semua model yang digunakan dalam Laporan Pandangan IPCC ke Empat.[3]

Umpan balik penting lainnya adalah hilangnya kemampuan memantulkan cahaya (albedo) oleh es.[4] Ketika temperatur global meningkat, es yang berada di dekat kutub mencair dengan kecepatan yang terus meningkat. Bersamaan dengan melelehnya es tersebut, daratan atau air dibawahnya akan terbuka. Baik daratan maupun air memiliki kemampuan memantulkan cahaya lebih sedikit bila dibandingkan dengan es, dan akibatnya akan menyerap lebih banyak radiasi Matahari. Hal ini akan menambah pemanasan dan menimbulkan lebih banyak lagi es yang mencair, menjadi suatu siklus yang berkelanjutan.

Umpan balik positif akibat terlepasnya CO2 dan CH4 dari melunaknya tanah beku (permafrost) adalah mekanisme lainnya yang berkontribusi terhadap pemanasan. Selain itu, es yang meleleh juga akan melepas CH4 yang juga menimbulkan umpan balik positif.

Kemampuan lautan untuk menyerap karbon juga akan berkurang bila ia menghangat, hal ini diakibatkan oleh menurunya tingkat nutrien pada zona mesopelagic sehingga membatasi pertumbuhan diatom daripada fitoplankton yang merupakan penyerap karbon yang rendah.[5]

Variasi Matahari

Variasi Matahari selama 30 tahun terakhir.

Terdapat hipotesa yang menyatakan bahwa variasi dari Matahari, dengan kemungkinan diperkuat oleh umpan balik dari awan, dapat memberi kontribusi dalam pemanasan saat ini.[6] Perbedaan antara mekanisme ini dengan pemanasan akibat efek rumah kaca adalah meningkatnya aktivitas Matahari akan memanaskan stratosfer sebaliknya efek rumah kaca akan mendinginkan stratosfer. Pendinginan stratosfer bagian bawah paling tidak telah diamati sejak tahun 1960,[7] yang tidak akan terjadi bila aktivitas Matahari menjadi kontributor utama pemanasan saat ini. (Penipisan lapisan ozon juga dapat memberikan efek pendinginan tersebut tetapi penipisan tersebut terjadi mulai akhir tahun 1970-an.) Fenomena variasi Matahari dikombinasikan dengan aktivitas gunung berapi mungkin telah memberikan efek pemanasan dari masa pra-industri hingga tahun 1950, serta efek pendinginan sejak tahun 1950.[8][9]

Ada beberapa hasil penelitian yang menyatakan bahwa kontribusi Matahari mungkin telah diabaikan dalam pemanasan global. Dua ilmuan dari Duke University mengestimasikan bahwa Matahari mungkin telah berkontribusi terhadap 45-50% peningkatan temperatur rata-rata global selama periode 1900-2000, dan sekitar 25-35% antara tahun 1980 dan 2000.[10] Stott dan rekannya mengemukakan bahwa model iklim yang dijadikan pedoman saat ini membuat estimasi berlebihan terhadap efek gas-gas rumah kaca dibandingkan dengan pengaruh Matahari; mereka juga mengemukakan bahwa efek pendinginan dari debu vulkanik dan aerosol sulfat juga telah dipandang remeh.[11] Walaupun demikian, mereka menyimpulkan bahwa bahkan dengan meningkatkan sensitivitas iklim terhadap pengaruh Matahari sekalipun, sebagian besar pemanasan yang terjadi pada dekade-dekade terakhir ini disebabkan oleh gas-gas rumah kaca.

Pada tahun 2006, sebuah tim ilmuan dari Amerika Serikat, Jerman dan Swiss menyatakan bahwa mereka tidak menemukan adanya peningkatan tingkat "keterangan" dari Matahari pada seribu tahun terakhir ini. Siklus Matahari hanya memberi peningkatan kecil sekitar 0,07% dalam tingkat "keterangannya" selama 30 tahun terakhir. Efek ini terlalu kecil untuk berkontribusi terhadap pemansan global.[12][13] Sebuah penelitian oleh Lockwood dan Fröhlich menemukan bahwa tidak ada hubungan antara pemanasan global dengan variasi Matahari sejak tahun 1985, baik melalui variasi dari output Matahari maupun variasi dalam sinar kosmis.[14]

Peternakan (konsumsi daging)

Dalam laporan terbaru, Fourth Assessment Report, yang dikeluarkan oleh Intergovernmental Panel on Climate Change (IPCC), satu badan PBB yang terdiri dari 1.300 ilmuwan dari seluruh dunia, terungkap bahwa 90% aktivitas manusia selama 250 tahun terakhir inilah yang membuat planet kita semakin panas. Sejak Revolusi Industri, tingkat karbon dioksida beranjak naik mulai dari 280 ppm menjadi 379 ppm dalam 150 tahun terakhir. Tidak main-main, peningkatan konsentrasi CO2 di atmosfer Bumi itu tertinggi sejak 650.000 tahun terakhir! IPCC juga menyimpulkan bahwa 90% gas rumah kaca yang dihasilkan manusia, seperti karbon dioksida, metana, dan dinitrogen oksida, khususnya selama 50 tahun ini, telah secara drastis menaikkan suhu Bumi. Sebelum masa industri, aktivitas manusia tidak banyak mengeluarkan gas rumah kaca, tetapi pertambahan penduduk, pembabatan hutan, industri peternakan, dan penggunaan bahan bakar fosil menyebabkan gas rumah kaca di atmosfer bertambah banyak dan menyumbang pada pemanasan global.

Penelitian yang telah dilakukan para ahli selama beberapa dekade terakhir ini menunjukkan bahwa ternyata makin panasnya planet bumi dan berubahnya sistem iklim di bumi terkait langsung dengan gas-gas rumah kaca yang dihasilkan oleh aktifitas manusia. Khusus untuk mengawasi sebab dan dampak yang dihasilkan oleh pemanasan global, Perserikatan Bangsa Bangsa (PBB) membentuk sebuah kelompok peneliti yang disebut dengan Panel Antarpemerintah Tentang Perubahan Iklim atau disebut International Panel on Climate Change (IPCC). Setiap beberapa tahun sekali, ribuan ahli dan peneliti-peneliti terbaik dunia yang tergabung dalam IPCC mengadakan pertemuan untuk mendiskusikan penemuan-penemuan terbaru yang berhubungan dengan pemanasan global, dan membuat kesimpulan dari laporan dan penemuan- penemuan baru yang berhasil dikumpulkan, kemudian membuat persetujuan untuk solusi dari masalah tersebut . Salah satu hal pertama yang mereka temukan adalah bahwa beberapa jenis gas rumah kaca bertanggung jawab langsung terhadap pemanasan yang kita alami, dan manusialah kontributor terbesar dari terciptanya gas-gas rumah kaca tersebut. Kebanyakan dari gas rumah kaca ini dihasilkan oleh peternakan, pembakaran bahan bakar fosil pada kendaraan bermotor, pabrik-pabrik modern, pembangkit tenaga listrik, serta pembabatan hutan.

Tetapi, menurut Laporan Perserikatan Bangsa Bangsa tentang peternakan dan lingkungan yang diterbitkan pada tahun 2006 mengungkapkan bahwa, "industri peternakan adalah penghasil emisi gas rumah kaca yang terbesar (18%), jumlah ini lebih banyak dari gabungan emisi gas rumah kaca seluruh transportasi di seluruh dunia (13%). " Hampir seperlima (20 persen) dari emisi karbon berasal dari peternakan. Jumlah ini melampaui jumlah emisi gabungan yang berasal dari semua kendaraan di dunia!

Sektor peternakan telah menyumbang 9 persen karbon dioksida, 37 persen gas metana (mempunyai efek pemanasan 72 kali lebih kuat dari CO2 dalam jangka 20 tahun, dan 23 kali dalam jangka 100 tahun), serta 65 persen dinitrogen oksida (mempunyai efek pemanasan 296 kali lebih lebih kuat dari CO2). Peternakan juga menimbulkan 64 persen amonia yang dihasilkan karena campur tangan manusia sehingga mengakibatkan hujan asam.

Peternakan juga telah menjadi penyebab utama dari kerusakan tanah dan polusi air. Saat ini peternakan menggunakan 30 persen dari permukaan tanah di Bumi, dan bahkan lebih banyak lahan serta air yang digunakan untuk menanam makanan ternak. Menurut laporan Bapak Steinfeld, pengarang senior dari Organisasi Pangan dan Pertanian, Dampak Buruk yang Lama dari Peternakan - Isu dan Pilihan Lingkungan (Livestock's Long Shadow-Environmental Issues and Options), peternakan adalah "penggerak utama dari penebangan hutan .... kira-kira 70 persen dari bekas hutan di Amazon telah dialih-fungsikan menjadi ladang ternak. Selain itu, ladang pakan ternak telah menurunkan mutu tanah. Kira-kira 20 persen dari padang rumput turun mutunya karena pemeliharaan ternak yang berlebihan, pemadatan, dan erosi. Peternakan juga bertanggung jawab atas konsumsi dan polusi air yang sangat banyak. Di Amerika Serikat sendiri, trilyunan galon air irigasi digunakan untuk menanam pakan ternak setiap tahunnya. Sekitar 85 persen dari sumber air bersih di Amerika Serikat digunakan untuk itu. Ternak juga menimbulkan limbah biologi berlebihan bagi ekosistem.

Dampak pemanasan global

Para ilmuan menggunakan model komputer dari temperatur, pola presipitasi, dan sirkulasi atmosfer untuk mempelajari pemanasan global. Berdasarkan model tersebut, para ilmuan telah membuat beberapa prakiraan mengenai dampak pemanasan global terhadap cuaca, tinggi permukaan air laut, pantai, pertanian, kehidupan hewan liar dan kesehatan manusia.

Iklim Mulai Tidak Stabil

Para ilmuan memperkirakan bahwa selama pemanasan global, daerah bagian Utara dari belahan Bumi Utara (Northern Hemisphere) akan memanas lebih dari daerah-daerah lain di Bumi. Akibatnya, gunung-gunung es akan mencair dan daratan akan mengecil. Akan lebih sedikit es yang terapung di perairan Utara tersebut. Daerah-daerah yang sebelumnya mengalami salju ringan, mungkin tidak akan mengalaminya lagi. Pada pegunungan di daerah subtropis, bagian yang ditutupi salju akan semakin sedikit serta akan lebih cepat mencair. Musim tanam akan lebih panjang di beberapa area. Temperatur pada musim dingin dan malam hari akan cenderung untuk meningkat.

Daerah hangat akan menjadi lebih lembab karena lebih banyak air yang menguap dari lautan. Para ilmuan belum begitu yakin apakah kelembaban tersebut malah akan meningkatkan atau menurunkan pemanasan yang lebih jauh lagi. Hal ini disebabkan karena uap air merupakan gas rumah kaca, sehingga keberadaannya akan meningkatkan efek insulasi pada atmosfer. Akan tetapi, uap air yang lebih banyak juga akan membentuk awan yang lebih banyak, sehingga akan memantulkan cahaya matahari kembali ke angkasa luar, di mana hal ini akan menurunkan proses pemanasan (lihat siklus air). Kelembaban yang tinggi akan meningkatkan curah hujan, secara rata-rata, sekitar 1 persen untuk setiap derajat Fahrenheit pemanasan. (Curah hujan di seluruh dunia telah meningkat sebesar 1 persen dalam seratus tahun terakhir ini)[21]. Badai akan menjadi lebih sering. Selain itu, air akan lebih cepat menguap dari tanah. Akibatnya beberapa daerah akan menjadi lebih kering dari sebelumnya. Angin akan bertiup lebih kencang dan mungkin dengan pola yang berbeda. Topan badai (hurricane) yang memperoleh kekuatannya dari penguapan air, akan menjadi lebih besar. Berlawanan dengan pemanasan yang terjadi, beberapa periode yang sangat dingin mungkin akan terjadi. Pola cuaca menjadi tidak terprediksi dan lebih ekstrim.

Peningkatan Permukaan Laut

Perubahan tinggi rata-rata muka laut diukur dari daerah dengan lingkungan yang stabil secara geologi.

Ketika atmosfer menghangat, lapisan permukaan lautan juga akan menghangat, sehingga volumenya akan membesar dan menaikkan tinggi permukaan laut. Pemanasan juga akan mencairkan banyak es di kutub, terutama sekitar Greenland, yang lebih memperbanyak volume air di laut. Tinggi muka laut di seluruh dunia telah meningkat 10 - 25 cm (4 - 10 inchi) selama abad ke-20, dan para ilmuan IPCC memprediksi peningkatan lebih lanjut 9 - 88 cm (4 - 35 inchi) pada abad ke-21.

Perubahan tinggi muka laut akan sangat mempengaruhi kehidupan di daerah pantai. Kenaikan 100 cm (40 inchi) akan menenggelamkan 6 persen daerah Belanda, 17,5 persen daerah Bangladesh, dan banyak pulau-pulau. Erosi dari tebing, pantai, dan bukit pasir akan meningkat. Ketika tinggi lautan mencapai muara sungai, banjir akibat air pasang akan meningkat di daratan. Negara-negara kaya akan menghabiskan dana yang sangat besar untuk melindungi daerah pantainya, sedangkan negara-negara miskin mungkin hanya dapat melakukan evakuasi dari daerah pantai.

Bahkan sedikit kenaikan tinggi muka laut akan sangat mempengaruhi ekosistem pantai. Kenaikan 50 cm (20 inchi) akan menenggelamkan separuh dari rawa-rawa pantai di Amerika Serikat. Rawa-rawa baru juga akan terbentuk, tetapi tidak di area perkotaan dan daerah yang sudah dibangun. Kenaikan muka laut ini akan menutupi sebagian besar dari Florida Everglades.

Suhu Global Cenderung Meningkat

Orang mungkin beranggapan bahwa Bumi yang hangat akan menghasilkan lebih banyak makanan dari sebelumnya, tetapi hal ini sebenarnya tidak sama di beberapa tempat. Bagian Selatan Kanada, sebagai contoh, mungkin akan mendapat keuntungan dari lebih tingginya curah hujan dan lebih lamanya masa tanam. Di lain pihak, lahan pertanian tropis semi kering di beberapa bagian Afrika mungkin tidak dapat tumbuh. Daerah pertanian gurun yang menggunakan air irigasi dari gunung-gunung yang jauh dapat menderita jika snowpack (kumpulan salju) musim dingin, yang berfungsi sebagai reservoir alami, akan mencair sebelum puncak bulan-bulan masa tanam. Tanaman pangan dan hutan dapat mengalami serangan serangga dan penyakit yang lebih hebat.

Gangguan Ekologis

Hewan dan tumbuhan menjadi makhluk hidup yang sulit menghindar dari efek pemanasan ini karena sebagian besar lahan telah dikuasai manusia. Dalam pemanasan global, hewan cenderung untuk bermigrasi ke arah kutub atau ke atas pegunungan. Tumbuhan akan mengubah arah pertumbuhannya, mencari daerah baru karena habitat lamanya menjadi terlalu hangat. Akan tetapi, pembangunan manusia akan menghalangi perpindahan ini. Spesies-spesies yang bermigrasi ke utara atau selatan yang terhalangi oleh kota-kota atau lahan-lahan pertanian mungkin akan mati. Beberapa tipe spesies yang tidak mampu secara cepat berpindah menuju kutub mungkin juga akan musnah.

Dampak Sosial Dan Politik

Perubahan cuaca dan lautan dapat mengakibatkan munculnya penyakit-penyakit yang berhubungan dengan panas (heat stroke) dan kematian. Temperatur yang panas juga dapat menyebabkan gagal panen sehingga akan muncul kelaparan dan malnutrisi. Perubahan cuaca yang ekstrem dan peningkatan permukaan air laut akibat mencairnya es di kutub utara dapat menyebabkan penyakit-penyakit yang berhubungan dengan bencana alam (banjir, badai dan kebakaran) dan kematian akibat trauma. Timbulnya bencana alam biasanya disertai dengan perpindahan penduduk ke tempat-tempat pengungsian dimana sering muncul penyakit, seperti: diare, malnutrisi, defisiensi mikronutrien, trauma psikologis, penyakit kulit, dan lain-lain.

Pergeseran ekosistem dapat memberi dampak pada penyebaran penyakit melalui air (Waterborne diseases) maupun penyebaran penyakit melalui vektor (vector-borne diseases). Seperti meningkatnya kejadian Demam Berdarah karena munculnya ruang (ekosistem) baru untuk nyamuk ini berkembang biak. Dengan adamya perubahan iklim ini maka ada beberapa spesies vektor penyakit (eq Aedes Agipty), Virus, bakteri, plasmodium menjadi lebih resisten terhadap obat tertentu yang target nya adala organisme tersebut. Selain itu bisa diprediksi kan bahwa ada beberapa spesies yang secara alamiah akan terseleksi ataupun punah dikarenakan perbuhan ekosistem yang ekstreem ini. hal ini juga akan berdampak perubahan iklim (Climat change)yang bis berdampak kepada peningkatan kasus penyakit tertentu seperti ISPA (kemarau panjang / kebakaran hutan, DBD Kaitan dengan musim hujan tidak menentu)

Gradasi Lingkungan yang disebabkan oleh pencemaran limbah pada sungai juga berkontribusi pada waterborne diseases dan vector-borne disease. Ditambah pula dengan polusi udara hasil emisi gas-gas pabrik yang tidak terkontrol selanjutnya akan berkontribusi terhadap penyakit-penyakit saluran pernafasan seperti asma, alergi, coccidiodomycosis, penyakit jantung dan paru kronis, dan lain-lain.

Perdebatan tentang pemanasan global

Tidak semua ilmuwan setuju tentang keadaan dan akibat dari pemanasan global. Beberapa pengamat masih mempertanyakan apakah temperatur benar-benar meningkat. Yang lainnya mengakui perubahan yang telah terjadi tetapi tetap membantah bahwa masih terlalu dini untuk membuat prediksi tentang keadaan di masa depan. Kritikan seperti ini juga dapat membantah bukti-bukti yang menunjukkan kontribusi manusia terhadap pemanasan global dengan berargumen bahwa siklus alami dapat juga meningkatkan temperatur. Mereka juga menunjukkan fakta-fakta bahwa pemanasan berkelanjutan dapat menguntungkan di beberapa daerah.

Para ilmuwan yang mempertanyakan pemanasan global cenderung menunjukkan tiga perbedaan yang masih dipertanyakan antara prediksi model pemanasan global dengan perilaku sebenarnya yang terjadi pada iklim. Pertama, pemanasan cenderung berhenti selama tiga dekade pada pertengahan abad ke-20; bahkan ada masa pendinginan sebelum naik kembali pada tahun 1970-an. Kedua, jumlah total pemanasan selama abad ke-20 hanya separuh dari yang diprediksi oleh model. Ketiga, troposfer, lapisan atmosfer terendah, tidak memanas secepat prediksi model. Akan tetapi, pendukung adanya pemanasan global yakin dapat menjawab dua dari tiga pertanyaan tersebut.

Kurangnya pemanasan pada pertengahan abad disebabkan oleh besarnya polusi udara yang menyebarkan partikulat-partikulat, terutama sulfat, ke atmosfer. Partikulat ini, juga dikenal sebagai aerosol, memantulkan sebagian sinar matahari kembali ke angkasa luar. Pemanasan berkelanjutan akhirnya mengatasi efek ini, sebagian lagi karena adanya kontrol terhadap polusi yang menyebabkan udara menjadi lebih bersih.

Keadaan pemanasan global sejak 1900 yang ternyata tidak seperti yang diprediksi disebabkan penyerapan panas secara besar oleh lautan. Para ilmuan telah lama memprediksi hal ini tetapi tidak memiliki cukup data untuk membuktikannya. Pada tahun 2000, U.S. National Oceanic and Atmospheric Administration (NOAA) memberikan hasil analisa baru tentang temperatur air yang diukur oleh para pengamat di seluruh dunia selama 50 tahun terakhir. Hasil pengukuran tersebut memperlihatkan adanya kecenderungan pemanasan: temperatur laut dunia pada tahun 1998 lebih tinggi 0,2 derajat Celsius (0,3 derajat Fahrenheit) daripada temperatur rata-rata 50 tahun terakhir, ada sedikit perubahan tetapi cukup berarti.[21]

Pertanyaan ketiga masih membingungkan. Satelit mendeteksi lebih sedikit pemanasan di troposfer dibandingkan prediksi model. Menurut beberapa kritikus, pembacaan atmosfer tersebut benar, sedangkan pengukuran atmosfer dari permukaan Bumi tidak dapat dipercaya. Pada bulan Januari 2000, sebuah panel yang ditunjuk oleh National Academy of Sciences untuk membahas masalah ini mengakui bahwa pemanasan permukaan Bumi tidak dapat diragukan lagi. Akan tetapi, pengukuran troposfer yang lebih rendah dari prediksi model tidak dapat dijelaskan secara jelas.

Pengendalian pemanasan global

Konsumsi total bahan bakar fosil di dunia meningkat sebesar 1 persen per-tahun. Langkah-langkah yang dilakukan atau yang sedang diskusikan saat ini tidak ada yang dapat mencegah pemanasan global di masa depan. Tantangan yang ada saat ini adalah mengatasi efek yang timbul sambil melakukan langkah-langkah untuk mencegah semakin berubahnya iklim di masa depan.

Kerusakan yang parah dapat diatasi dengan berbagai cara. Daerah pantai dapat dilindungi dengan dinding dan penghalang untuk mencegah masuknya air laut. Cara lainnya, pemerintah dapat membantu populasi di pantai untuk pindah ke daerah yang lebih tinggi. Beberapa negara, seperti Amerika Serikat, dapat menyelamatkan tumbuhan dan hewan dengan tetap menjaga koridor (jalur) habitatnya, mengosongkan tanah yang belum dibangun dari selatan ke utara. Spesies-spesies dapat secara perlahan-lahan berpindah sepanjang koridor ini untuk menuju ke habitat yang lebih dingin.

Ada dua pendekatan utama untuk memperlambat semakin bertambahnya gas rumah kaca. Pertama, mencegah karbon dioksida dilepas ke atmosfer dengan menyimpan gas tersebut atau komponen karbon-nya di tempat lain. Cara ini disebut carbon sequestration (menghilangkan karbon). Kedua, mengurangi produksi gas rumah kaca.

Menghilangkan karbon

Cara yang paling mudah untuk menghilangkan karbon dioksida di udara adalah dengan memelihara pepohonan dan menanam pohon lebih banyak lagi. Pohon, terutama yang muda dan cepat pertumbuhannya, menyerap karbon dioksida yang sangat banyak, memecahnya melalui fotosintesis, dan menyimpan karbon dalam kayunya. Di seluruh dunia, tingkat perambahan hutan telah mencapai level yang mengkhawatirkan. Di banyak area, tanaman yang tumbuh kembali sedikit sekali karena tanah kehilangan kesuburannya ketika diubah untuk kegunaan yang lain, seperti untuk lahan pertanian atau pembangunan rumah tinggal. Langkah untuk mengatasi hal ini adalah dengan penghutanan kembali yang berperan dalam mengurangi semakin bertambahnya gas rumah kaca.

Gas karbon dioksida juga dapat dihilangkan secara langsung. Caranya dengan menyuntikkan (menginjeksikan) gas tersebut ke sumur-sumur minyak untuk mendorong agar minyak bumi keluar ke permukaan (lihat Enhanced Oil Recovery). Injeksi juga bisa dilakukan untuk mengisolasi gas ini di bawah tanah seperti dalam sumur minyak, lapisan batubara atau aquifer. Hal ini telah dilakukan di salah satu anjungan pengeboran lepas pantai Norwegia, di mana karbon dioksida yang terbawa ke permukaan bersama gas alam ditangkap dan diinjeksikan kembali ke aquifer sehingga tidak dapat kembali ke permukaan.

Salah satu sumber penyumbang karbon dioksida adalah pembakaran bahan bakar fosil. Penggunaan bahan bakar fosil mulai meningkat pesat sejak revolusi industri pada abad ke-18. Pada saat itu, batubara menjadi sumber energi dominan untuk kemudian digantikan oleh minyak bumi pada pertengahan abad ke-19. Pada abad ke-20, energi gas mulai biasa digunakan di dunia sebagai sumber energi. Perubahan tren penggunaan bahan bakar fosil ini sebenarnya secara tidak langsung telah mengurangi jumlah karbon dioksida yang dilepas ke udara, karena gas melepaskan karbon dioksida lebih sedikit bila dibandingkan dengan minyak apalagi bila dibandingkan dengan batubara. Walaupun demikian, penggunaan energi terbaharui dan energi nuklir lebih mengurangi pelepasan karbon dioksida ke udara. Energi nuklir, walaupun kontroversial karena alasan keselamatan dan limbahnya yang berbahaya, bahkan tidak melepas karbon dioksida sama sekali.

Persetujuan internasional

Kerjasama internasional diperlukan untuk mensukseskan pengurangan gas-gas rumah kaca. Di tahun 1992, pada Earth Summit di Rio de Janeiro, Brazil, 150 negara berikrar untuk menghadapi masalah gas rumah kaca dan setuju untuk menterjemahkan maksud ini dalam suatu perjanjian yang mengikat. Pada tahun 1997 di Jepang, 160 negara merumuskan persetujuan yang lebih kuat yang dikenal dengan Protokol Kyoto.

Perjanjian ini, yang belum diimplementasikan, menyerukan kepada 38 negara-negara industri yang memegang persentase paling besar dalam melepaskan gas-gas rumah kaca untuk memotong emisi mereka ke tingkat 5 persen di bawah emisi tahun 1990. Pengurangan ini harus dapat dicapai paling lambat tahun 2012. Pada mulanya, Amerika Serikat mengajukan diri untuk melakukan pemotongan yang lebih ambisius, menjanjikan pengurangan emisi hingga 7 persen di bawah tingkat 1990; Uni Eropa, yang menginginkan perjanjian yang lebih keras, berkomitmen 8 persen; dan Jepang 6 persen. Sisa 122 negara lainnya, sebagian besar negara berkembang, tidak diminta untuk berkomitmen dalam pengurangan emisi gas.

Akan tetapi, pada tahun 2001, Presiden Amerika Serikat yang baru terpilih, George W. Bush mengumumkan bahwa perjanjian untuk pengurangan karbon dioksida tersebut menelan biaya yang sangat besar. Ia juga menyangkal dengan menyatakan bahwa negara-negara berkembang tidak dibebani dengan persyaratan pengurangan karbon dioksida ini. Kyoto Protokol tidak berpengaruh apa-apa bila negara-negara industri yang bertanggung jawab menyumbang 55 persen dari emisi gas rumah kaca pada tahun 1990 tidak meratifikasinya. Persyaratan itu berhasil dipenuhi ketika tahun 2004, Presiden Rusia Vladimir Putin meratifikasi perjanjian ini, memberikan jalan untuk berlakunya perjanjian ini mulai 16 Februari 2005.

Banyak orang mengkritik Protokol Kyoto terlalu lemah. Bahkan jika perjanjian ini dilaksanakan segera, ia hanya akan sedikit mengurangi bertambahnya konsentrasi gas-gas rumah kaca di atmosfer. Suatu tindakan yang keras akan diperlukan nanti, terutama karena negara-negara berkembang yang dikecualikan dari perjanjian ini akan menghasilkan separuh dari emisi gas rumah kaca pada 2035. Penentang protokol ini memiliki posisi yang sangat kuat. Penolakan terhadap perjanjian ini di Amerika Serikat terutama dikemukakan oleh industri minyak, industri batubara dan perusahaan-perusahaan lainnya yang produksinya tergantung pada bahan bakar fosil. Para penentang ini mengklaim bahwa biaya ekonomi yang diperlukan untuk melaksanakan Protokol Kyoto dapat menjapai 300 milyar dollar AS, terutama disebabkan oleh biaya energi. Sebaliknya pendukung Protokol Kyoto percaya bahwa biaya yang diperlukan hanya sebesar 88 milyar dollar AS dan dapat lebih kurang lagi serta dikembalikan dalam bentuk penghematan uang setelah mengubah ke peralatan, kendaraan, dan proses industri yang lebih effisien.

Pada suatu negara dengan kebijakan lingkungan yang ketat, ekonominya dapat terus tumbuh walaupun berbagai macam polusi telah dikurangi. Akan tetapi membatasi emisi karbon dioksida terbukti sulit dilakukan. Sebagai contoh, Belanda, negara industrialis besar yang juga pelopor lingkungan, telah berhasil mengatasi berbagai macam polusi tetapi gagal untuk memenuhi targetnya dalam mengurangi produksi karbon dioksida.

Setelah tahun 1997, para perwakilan dari penandatangan Protokol Kyoto bertemu secara reguler untuk menegoisasikan isu-isu yang belum terselesaikan seperti peraturan, metode dan pinalti yang wajib diterapkan pada setiap negara untuk memperlambat emisi gas rumah kaca. Para negoisator merancang sistem di mana suatu negara yang memiliki program pembersihan yang sukses dapat mengambil keuntungan dengan menjual hak polusi yang tidak digunakan ke negara lain. Sistem ini disebut perdagangan karbon. Sebagai contoh, negara yang sulit meningkatkan lagi hasilnya, seperti Belanda, dapat membeli kredit polusi di pasar, yang dapat diperoleh dengan biaya yang lebih rendah. Rusia, merupakan negara yang memperoleh keuntungan bila sistem ini diterapkan. Pada tahun 1990, ekonomi Rusia sangat payah dan emisi gas rumah kacanya sangat tinggi. Karena kemudian Rusia berhasil memotong emisinya lebih dari 5 persen di bawah tingkat 1990, ia berada dalam posisi untuk menjual kredit emisi ke negara-negara industri lainnya, terutama mereka yang ada di Uni Eropa